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ABSTRACT

Herein, an evaluation of the uncertainty of precipitation-type observations and its effect on the validation

of forecast precipitation type is undertaken. The forms of uncertainty are instrument/observer bias and

horizontal/temporal variability. Instrument/observer biases are assessed by comparing observations from the

Automated Surface Observing Station (ASOS) and Meteorological Phenomena Identification Near the

Ground (mPING) networks. Relative to the augmented ASOS, mPING observations are biased toward ice

pellets (PL) and away from rain (RA).However, whenmPING is used to validate precipitation-type algorithms,

the probabilities of detection (PODs) for both RA and PL are decreased relative to those from the augmented

ASOS.The decreasedPOD forRA is the result of numerousmPINGreports ofRA in the presence of a surface-

subfreezing layer in the nearest observed sounding. Temporal and spatial variability effects are also assessed.

The typical lifespan of transitional forms of precipitation is between 10 and 40min, withmany events having two

or more forms of precipitation reported in a 1-h time frame. Depending on how one defines a hit for these

rapidly evolving events, inherent biases in the forecasts may be dampened or masked altogether. Spatial var-

iability also exerts a strong control on the performance of postprocessing algorithms, as both FZRA and PL

often have spatial scales that are too small to be resolved, even by convection-allowing forecast models.

However, the degree of variability is not strongly dependent on the distance separating any two observation

pairs and, consequently, validation statistics do not change significantly as amodel’s grid spacing is increased, all

else being equal.

1. Introduction

The correct specification of the surface precipitation

type during winter is quite important, as it profoundly

affects the economy and public safety (Ralph et al. 2005).

Numerous assessments show that although rain (RA) and

snow (SN) are usually well predicted, freezing rain

(FZRA) and ice pellets (PL) are not—a result generally

attributed to uncertainty effects (Bourgouin 2000;

Manikin et al. 2004; Manikin 2005; Wandishin et al. 2005;

Ikeda et al. 2013; Reeves et al. 2014; Elmore et al. 2015,

hereafter EMAR). Model and algorithm uncertainties

have been addressed by several previous investigators

(Manikin et al. 2004; Manikin 2005;Wandishin et al. 2005;

Reeves et al. 2014), but little attention has been given to

the apparent effects observational uncertainty has on

precipitation-type validation statistics. Such is the aim of

this paper.

Forecasts of precipitation type are created by post-

processing algorithms that are applied to numericalmodel

output. There is a wide range of approaches and degrees

of complexity to precipitation-type algorithms. Some use

bulk properties from the temperature and humidity pro-

files (e.g., Baldwin et al. 1994; Bourgouin 2000; Schuur

et al. 2012; Elmore and Grams 2015; Chenard et al. 2015),

others attempt to calculate or infer the liquid-water con-

tent of falling hydrometeors (Ramer 1993; Czys et al.

1996; Reeves et al. 2016), while still others use mixing

ratios from microphysical parameterization schemes as

the primary discriminant (Thériault et al. 2010; Ikeda et al.
2013). As a result, different algorithms may produce very

different results, particularly when the environmental

temperature is near 08C (Manikin et al. 2004; Manikin

2005; Reeves et al. 2014). In some cases, strong biases

exist. For example, the Baldwin algorithm has a well-

known bias toward PL. The Ramer algorithm is known to

be biased toward FZRA, and the algorithm described in

Schuur et al. (2012) is strongly biased toward a FZRA–PL

mix (Baldwin et al. 1994; Manikin et al. 2004; Manikin
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2005; Reeves et al. 2014). All of these factors combined

can result in a wide array of diagnoses from the various

algorithms, even when supplied with identical input

(Reeves et al. 2014).

Poor forecasts may also be due to model uncertainty.

The degree to which an algorithm suffers from model

uncertainty is a function of its assumptions as some al-

gorithms use discriminants that have a higher range of

uncertainty (Wandishin et al. 2005; Reeves et al. 2014).

But the proximity of the environment to 08C is also a

contributor as even small errors may be sufficient to

change the low-level temperature from subfreezing to

above freezing or vice versa. Indeed, uncertainty effects,

which have been shown to be quite detrimental for PL

and FZRA (since these forms usually occur at temper-

atures near 08C), render some algorithms useless for

discriminating between these classes (Wandishin et al.

2005; Reeves et al. 2014).

One source of uncertainty that has hitherto received

minimal attention is the observational uncertainty. Most

investigators use the Automated Surface Observing

Station (ASOS) network as ground truth. An advantage

of the ASOS is that the instruments continuously mon-

itor the environment and are sensitive enough to detect

changes in the precipitation type before the human eye,

especially at night (NOAA 1998). Some ASOS sites are

manned by trained human observers who can augment

an automated report if they see that it is in error. At

these locations, the observer may enter a variety of

mixes or change the precipitation type entirely. Pre-

sumably, the augmented observations are highly reliable

since theymarry the strong sensitivity of the instruments

with the quality control of a trained observer.

ASOS sites that are not augmented are known to have

reporting errors in certain situations. They cannot, for

example, diagnose PL or freezing drizzle (FZDZ) and

tend to classify these forms of precipitation as RA, SN,

or mist. It is also possible for SN to be misdiagnosed as

FZRA or RA under certain conditions. The automated

sites also do not report mixes. [For more information on

the ASOS instrumentation, the reader is referred to

NOAA (1998).] There have been several studies that use

the ASOS network as ground truth, but that do not dis-

criminate between the augmented and nonaugmented

observations (e.g., Manikin et al. 2004; Manikin 2005;

Wandishin et al. 2005; Ikeda et al. 2013; Thompson et al.

2014; Benjamin et al. 2016; Johnson and Shepherd 2016;

Scheuerer et al. 2016; Shafer and Antolik 2016). Whether

using these observations interchangeably affects valida-

tion statistics for precipitation-type classifiers is unknown.

A new observation dataset has recently been collected

by the National Severe Storms Laboratory called the

Meteorological Phenomena Identification Near the

Ground (mPING; Elmore et al. 2014). These observa-

tions aremade by ordinary citizens from their computers

or mobile devices and include the following classes: RA,

drizzle (DZ), RASN, FZDZ, FZRA, PL, RAPL, SNPL,

and SN. This dataset has been used in at least one as-

sessment of precipitation-type algorithms (EMAR) and

is used as ground truth to build a new statistically driven

classifier (Elmore and Grams 2015). Preliminary com-

parisons betweenmPINGandASOS suggest themPING

observations are reasonably robust (Elmore et al. 2014,

EMAR), but the exact degree to which mPING differs

from ASOS has not been quantified, and it remains an

open question whether using this dataset over ASOS af-

fects validation statistics.

Other observational uncertainties beyond those of the

instruments/observers exist, particularly the temporal and

spatial representativeness of the observations. Several

investigators have found that environments near 08C have

significant temporal and spatial variability in their pre-

cipitation types (Crawford and Stewart 1995; Bernstein

2000;Cortinas 2000;Rauber et al. 2000, 2001;Robbins and

Cortinas 2002; Changnon 2003; Cortinas et al. 2004;

Thériault et al. 2010; Reeves et al. 2014; EMAR). These

forms of variability have not previously been quantified.

Hence, it is unclear how they should be treated in the

verification of classifiers and whether different ap-

proaches will alter the conclusions and recommenda-

tions of the investigator.

The aim of this study is to assess both of the

above forms of observational uncertainty (instrument/

observer bias and temporal/spatial variability) and their

effects on the apparent performance of precipitation-

type classifiers. In section 2, different observing net-

works are compared to assess the presence of biases and

their effects on validation statistics. In section 3, the

temporal and spatial variabilities are quantified and

their effects assessed. Concluding thoughts are provided

in section 4.

2. Constituency of precipitation types at the surface

Let us first consider the frequency of the various

precipitation types during winter months (October–

March) for the ASOS and mPING networks. For this

exercise, we will consider separately the augmented and

nonaugmented ASOS sites, the locations of which are

shown in Figs. 1a and 1d. The augmented sites are at

commercial airports and air force bases where human

observers (either Federal Aviation Administration–

trained contractors or trained air force personnel) can

alter the automated observations if they see that they

are in error. The 5-min observations from 2000 to 2015

are used herein. Because these reports are augmented,
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they are treated as the relative ‘‘truth,’’ against which

the other reporting systems are compared. This is not to

say that the augmented reports are completely free from

error or may not have any biases of their own. Rather,

the comparison is merely to highlight how the other

networks that have lesser degrees of quality control

perform.

Not all nonaugmented ASOS sites are used. Rather,

only select sites that are relatively close to the augmented

sites (most pairs are within 40km of each other and no

pairs are more than 60km apart, as indicated in Fig. 1d)

are included to facilitate a more direct comparison.

Specifically avoided are sites within and west of the

Rocky Mountains where the spatial representativity is

questionable. The nonaugmented sites do not have a

dedicated human observer. However, if present person-

nel discover an observation is in error, they can alter the

report. So, there are some occasions when an augmented

FIG. 1. (a),(d),(g) The locations of augmented, nonaugmented, and mPING observations used in this study. (b),(e),(h) The percentage

(out of the total number of observations available) of each class indicated. (c),(f),(i) The percentage (out of the total number of ‘‘other’’

observations) of each class indicated.
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report has been made at the nonaugmented sites in

Fig. 1d, but the sites used herein are augmented less than

10%of the time. There is no set guidance onwhen to alter

reports at locations that are usually nonaugmented

(NOAA 1998). Likewise, there are occasions when the

augmented sites do not have the augmentation flag,

suggesting the observermade no alterations to the report.

Only those sites with at least 95% of the observations

flagged as augmented during precipitation are included in

this group to ensure a high measure of quality control.

The ASOS observations were carefully assessed at all

sites to ensure changes in the instrumentation did not

alter the frequency of the various precipitation types.

While some years and sites have comparatively high

frequencies of SN, FZRA, or PL that appear to be due to

seasonal/latitudinal variations, there are no permanent

trends or changes.

The mPING observations are available from De-

cember 2012 toMarch 2015. Their locations vary in time

and space, as indicated in Fig. 1g. No mPING observa-

tions within and west of the Rocky Mountains are used

in this study for the same reasons mentioned above. This

yields 398 595 observations. (There are 1 980 987 aug-

mented and 1 606 582 nonaugmented observations.)

In this section and all others, the classifiers used are

those employed by Ramer (1993), Baldwin et al. (1994),

and Bourgouin (2000). These are chosen because they

can be initialized with observed sounding data and they

represent a spectrum of biases according to previous

research (Manikin et al. 2004; Manikin 2005; Reeves

et al. 2014). There are two versions of the Baldwin al-

gorithm, which are identical save for the discrimination

between SN and PL. While both have a pronounced PL

bias, the later version, referred to as Baldwin2, is the less

biased and is used herein. All three algorithms diagnose

SN, RA, PL, and FZRA. The Ramer scheme also has a

FZRAPL class, but Reeves et al. (2014) demonstrate

that this class is rarely diagnosed. In those instances

where it is diagnosed, if just one of these categories

agrees with the observation, that instance is considered

a hit.

For the sake of concision, in this and subsequent sec-

tions, the validation statistics are limited to the proba-

bility of detection (POD). Other verification scores such

as the false alarm ratio and the Heidke and Pierce skill

scores were computed, but the overriding interpretation

is the same as what can be gleaned through consideration

of only the POD.

a. Augmented versus nonaugmented ASOS
observations

The constituency of precipitation type for the aug-

mentedASOS is depicted in Fig. 1b. Themost commonly

reported categories are RA/DZ at 54% and SN at 42%.

The ‘‘other’’ category composes 4% of all observations.

Figure 1c shows that FZRA, FZDZ, and RASN/DZSN

each account for 20%–25% of the other category. Con-

spicuously small is the fraction of PL observations (5%).

Though it is not unreasonable to presume that some in-

stances of PL are missed, note that the fraction of all

classes that include PL is 26%, which is comparable to

FZRA. Therefore, it appears more likely that PL cases

are not underreported, but occur more often in combi-

nation with other forms, consistent with previous re-

search (Hanesiak and Stewart 1995; Cortinas et al. 2004).

There are two key differences between the augmented

and nonaugmented sites. The first is that RA/DZ

compose a higher fraction of the total number of obser-

vations in the nonaugmented observations (Fig. 1e). This

comes at the expense of PL and PL mixes and some in-

stances of SN and is a direct consequence of the way in

which the ASOS detects RA. The system uses the hy-

drometeor terminal velocity, which is nearly identical for

RA and PL. Large, wetted snowflakes can also have a

terminal velocity similar to RA (NOAA 1998). The

FZRA reports also appear to differ significantly between

the augmented and nonaugmented data (Fig. 1f). How-

ever, in both systems FZRAcomposes about 1.25%of the

total number of observations. As expected, PL, FZDZ,

and RASN have nearly negligible percentages, as these

forms of precipitation cannot be automatically detected

with present technology (NOAA 1998).

b. Augmented ASOS versus mPING observations

The frequency of SN observations in the mPING

dataset is consistent with the augmented ASOS reports

(cf. Figs. 1b and 1h), but the fraction of RA/DZ is con-

siderably less (33%) and the other category much higher

(23%). The majority of other reports are PL (34%) or

some combination that includes PL (27%; Fig. 1i). This

is much higher than for the augmented ASOS. Con-

versely, FZRA and FZDZ are 11% and 12% less than in

the augmented ASOS dataset. It is not a stretch to as-

sume that the mPING users are less motivated to report

RA/DZ, as these forms are rather commonplace, thus

explaining the lower fraction for this class, but the ap-

parent biases toward PL and against FZRA are worth

additional thought.

Differences in the length of time over which obser-

vations are collected, the frequencies and locations of

reports, and amount of user training could all contribute

to the discrepancies between Figs. 1c and 1i. To better

compare these two datasets, we mimic an analysis from

Elmore et al. (2014; see their Fig. 8). In this exercise, the

fraction of augmentedASOS observations that surrounds

and agrees with the mPING observations of FZRA,
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FZDZ, and PL are computed as a function of the amount

of time and distance that separates them. Since it is unclear

whether citizen observers can reliably distinguish between

FZRA and FZDZ, these two classes are combined. A hit

is defined as any instance where the ASOS observation

agrees with or is in a mix that includes the mPING ob-

servation type. Though all observations that are within

100km and 100min are compared, only shown are those

that arewithin 15kmand 15min since the fractions change

by less than 2% outside of this range (Fig. 2).

The FZRA analysis shows that for most times and

distances, the ASOS observations only agree with

mPINGabout 50%of the time (Fig. 2a). As the time and

distance are decreased to 2min and 2km, the agreement

increases to 100%. This suggests that when mPING

observers report FZRA, nearby augmented ASOS sites

will very likely report FZRA. The same exercise can also

be performed in reverse (i.e., augmented observations are

compared to the surrounding mPING observations),

which results in a much lower rate of agreement (ranging

from 25% to 40% for pairs that are within 10min and

10km), indicating that mPING observations of FZRA

are consistent with the ASOS, but are strongly under-

reported. This is not a surprising result. The ASOS sys-

tem is able to detect FZRAbefore ice accretion is visible,

which may partly account for the discrepancy, but likely

of greater import is the location of the mPINGobservers,

most of whom report from urban and suburban areas

where ground temperatures may very well be above

freezing even when nearby open areas have subfreezing

surface temperatures.

The agreement for PL is not as good. For the span of

time and distance considered, the rates of agreement

range from 33% to 49% (Fig. 2b).1 Performing this ex-

ercise in reverse gives a rate of 100% for pairs that are

within 2 km and 2min, suggesting that mPING is indeed

biased toward PL relative to the augmented ASOS.

There are two potential explanations for this. First, it is

possible that some instances of PL are missed in the

augmented reports. The fact that ASOS observers do

not always augment the observations is evidenced by a

small percentage of unknown precipitation (UP) reports

in Fig. 1c. Another potential explanation is that some

mPING users do not know what PL are. The PL option

in the mPING cellphone application reads ‘‘ice pellets/

sleet/graupel’’ or ‘‘ice pellets/sleet’’ depending on the

reporter’s operating system. The term ‘‘sleet’’ has a

rather wide range of definitions. In Europe and some

parts of the United States, it is used to refer to wet snow.

In some industries, it refers to any form of precipitation

that forms a coating of ice on overhead electrical wires

and trees, which can happen with either SN or FZRA

(Abbe 1916). These colloquial variations in the defini-

tion persist to this day (Glickman 2000). Among the

augmentedASOS reports that are within 2km and 2min

of mPING reports of PL, 65.5% are for SN or FZRA,

suggesting that some mPING users probably are con-

fusing PL with these forms of precipitation.

c. Effects of observation biases on algorithm
validation

Let us now consider whether the PODs from the

precipitation-type algorithms are affected by the above

biases. To test this, observed soundings are identified

that are associated with long-duration (i.e., the pre-

cipitation type does not change during the 4h sur-

rounding the launch time according to the augmented

ASOS) SN, RA, PL, and FZRA events from December

2012 toMarch 2015. There are 429 such soundings. Each

is run through the classifiers described above and the

output compared against the observations. Only sites

within 35km and 1h of the radiosonde launch are in-

cluded. The 35-km distance is consistent with that used

in Ramer (1993) and Reeves et al. (2014). The 1-h

window is consistent with the typical validation period

for a mesoscale model. Since several mPING observa-

tions may correspond to a single sounding, two ap-

proaches are considered. In the first, only the closest

observation in time and space is used. In the second, all

FIG. 2. The percentage of surrounding ASOS observations that

agree with mPING observations of (a) FZRA and FZDZ and

(b) PL.

1 This range is about 25% smaller than that in Elmore et al.

(2014). The discrepancy between this analysis and theirs is the

length of time considered; their analysis only includes reports from

December 2012 through March 2013. When this exercise is re-

peated using only that time frame, the analyses agree.
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observations within 35 km and 1h of the launch location

and time are used. The PODs for all networks and al-

gorithms are provided in Table 1.

The augmented ASOS have trends similar to what

previous investigators have found (Bourgouin 2000;

Manikin et al. 2004; Manikin 2005; Reeves et al. 2014).

Namely, Baldwin2 has very high (low) PODs for PL

(FZRA), Ramer is the opposite, and Bourgouin has

similar PODs for both. All three algorithms have rela-

tively high PODs for SN and RA. Except for PL, the

PODs for the nonaugmented sites agree quite well with

those for the augmented sites, suggesting that for these

categories it matters little whether one distinguishes

between augmented and nonaugmented observations.

The PODs for PL are significantly different between the

augmented and nonaugmented datasets. However,

sample size prohibits a statistically meaningful in-

terpretation as there are only five soundings that are

long duration and occur coincident with a PL observa-

tion at the nearby nonaugmented site.

When validated against the closest mPING observa-

tion in time and space, the trends for RA and PL change

markedly. For all classifiers, PODs for RA decrease by

about 20%, with the most common errant diagnosis

being for FZRA. As noted above, this is likely due to

mPING observations mostly coming from urban and

suburban settings. If one discounts all of the soundings

with a surface-based cold layer, the PODs for RA are

similar to those for the augmented ASOS reports (not

shown). Given that the mPING observers have a strong

PL reporting bias, the reduced PODs for this class are

also expectable. Nevertheless, similar trends to the

augmented ASOS emerge. For example, the POD for

PL is highest for Baldwin2 and lowest forRamer, though

the spread between these PODs is not as big. The re-

verse is true for FZRA; Ramer has the highest PODs

and Baldwin2 the lowest and the spread between them is

greater than for the augmented ASOS.

When this exercise is repeated only taking into ac-

count all mPING observations within 1h and 35km of

the radiosonde launch time and location, all algorithms

appear to perform much more poorly for RA and much

better for PL than what is observed for any of the other

three validation approaches. The culprits are several

RA and PL soundings for which there are 10 or more

nearby agreeing mPING reports that unduly influence

the results. The effects of this are only somewhat miti-

gated by reducing the distance in time and space from

the radiosonde since mPING reports tend to be tem-

porally and spatially clustered (not shown). This exer-

cise highlights an important cautionary note regarding

the use of mPING observations: when multiple obser-

vations are associated with the same profile, this can lead

to misleading statistics, particularly when the multiple

observations are all in agreement. In this situation, the

effect is to make the algorithms appear to be much

better at detecting PL and much worse at RA than they

really are.

3. Temporal and spatial variability

Let us now consider the effects temporal and spatial

variability have on algorithm statistics. This form of

uncertainty is not the same as that investigated in section

2 (i.e., it is not a consequence of instrument or observer

error), but, nevertheless, it can have profound impacts

on validation approaches and statistics.

a. Temporal trends in precipitation type

In this section, the length of typical episodes of the

various forms of precipitation is determined using the

5-min augmented ASOS observations. Herein, an epi-

sode is defined as a sequence of two or more consecutive

reports of the same type of precipitation. According to

these rules, RA/DZ and SN are comparatively long

lived, each typically lasting more than 1h and having

several events lasting longer than 12 h (Fig. 3). The

majority of events from the remaining classes are less

than 1h. Note that the average FZRA and FZDZ event

lasts 35 and 40min, respectively; the typical PL event

only 10min; and the typical RASN event 20min.

Such variability has important implications for any

task that uses numerical model output since the typical

validation period (1 h) is longer than the average

TABLE 1. The PODs (%) for different classification algorithms

using soundings that are associated with long-duration (i.e., .4 h)

SN, RA, FZRA, and PL episodes. For mPING-closest only the

closest mPING in time and space are usedwhilemPING-all uses all

mPING observations within 35 km and 1 h of the sounding time

and location.

SN RA PL FZRA

Augmented ASOS

Baldwin2 89.7 87.6 64.4 16.4

Bourgouin 86.1 92.4 50.5 42.9

Ramer 86.7 87.5 28.8 47.5

Nonaugmented ASOS

Baldwin2 91.9 83.3 60.0 18.2

Bourgouin 86.3 86.8 80.0 45.5

Ramer 88.8 82.1 20.0 54.5

mPING-closest

Baldwin2 85.4 69.1 48.3 14.3

Bourgouin 79.2 67.9 36.7 39.1

Ramer 81.3 69.1 33.3 52.2

mPING-all

Baldwin2 92.6 58.0 86.4 22.4

Bourgouin 86.4 56.6 73.9 31.8

Ramer 91.4 57.9 72.1 44.8
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duration of the transitional forms. Therefore, one is

prompted to question the method by which model fore-

casts of precipitation type should be validated. There are

three approaches one can use. The first, referred to as the

top-of-the-hour (TOH) method, acknowledges that the

model outputs the instantaneous fields valid at the stated

time (typically at the top of the hour) and assumes that

the diagnosed precipitation type should exactly agree

with the observed precipitation type at that time. The

second method, referred to as mean conditions (MC),

assumes that the optimal situation occurs when the di-

agnosed precipitation type agrees with the most fre-

quently observed type over the period of time for which

the analysis or forecast is valid. The last method, any one

counts (AOC), declares as a hit each time the diagnosed

precipitation type agrees with any of the observed pre-

cipitation types during the validation period. For the se-

quence of observations in Table 2, only SN would be

considered a hit for the TOHmethod, only FZRA for the

MC method, and either SN, PL, or FZRA would be

considered hits using the AOC technique.

To test the different methods described above, ob-

served soundings associated with augmented ASOS

sites where the precipitation type changes during the

hour following the launch time are fed to each of the

three classifiers. Only events that include FZRA or PL

are used in this exercise. If the observed precipitation

type according to the methods described above is a mix,

that case is discarded. The POD for each method and

algorithm is provided in Table 3.

The different methods yield different PODs in accor-

dance with what one might expect: TOH has the lowest

PODs and AOC the highest. What is surprising is the

range of differences between these methods (roughly

25%–70%). Using AOC results in PODs that are far

greater than what is obtained for persistent PL and

FZRA events (Table 1). Even MC outperforms most of

the PL and FZRA scores in Table 1. No matter which

method is used, the biases in Table 1 are reduced or

eliminated altogether. Such results prompt one to ques-

tion whether it is fair to use all observations in an as-

sessment of algorithm performance or only those from

persistent events. Limiting an assessment to only persis-

tent events allows one to assess whether an algorithm can

adequately discriminate between these classes on those

occasions when the environment is unambiguous, but

ignores the majority of incidences of FZRA and PL since

they are generally short lived.

b. Spatial trends in precipitation type

It has previously been argued that there is a high de-

gree of horizontal variability in precipitation type when

the temperature is near 08C (Crawford and Stewart

1995; Bernstein 2000; Cortinas 2000; Rauber et al. 2000,

2001; Robbins and Cortinas 2002; Changnon 2003;

Cortinas et al. 2004; Thériault et al. 2010). This has also
been demonstrated using the mPING network (Reeves

FIG. 3. Box-and-whisker plots showing the length of all episodes

of RA, SN, FZRA, FZDZ, PL, and RASN, where an episode is

defined as two or more consecutive reports for the same kind of

precipitation. The 50th and 75th percentiles are provided beneath

the graph.

TABLE 2. ASOS observations from 1100 to 1200UTC 1 Feb 2008

at Albany, NY. The dash (-) indicates the precipitation is of light

intensity.

Time (UTC) Type

1100:31 SN

1105:31 -SNPL

1110:31 -SNPL

1115:31 PL

1120:31 PL

1125:31 -FZRAPL

1130:31 -FZRA

1135:31 -FZRA

1140:31 -FZRA

1145:31 -FZRA

1150:31 -FZRA

1155:31 -FZRA

TABLE 3. The PODs obtained when using the various validation

methods discussed in section 3a.

TOH MC AOC

Baldwin2 25.9 43.8 73.1

Bourgouin 26.5 53.0 67.4

Ramer 26.1 45.0 74.9

DECEMBER 2016 REEVE S 1967

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/22/21 07:47 PM UTC



et al. 2014; EMAR). But this variability has never been

quantified nor its effects on model validation examined.

One might expect that SN and RA would be more

horizontally uniform since either can cover rather large

regions in the cold and warm sectors of midlatitude cy-

clones, respectively. However, FZRA and PL, since

they often occur at temperatures near 08C and are quite

sensitive to small changes in temperature, precipitation

rate, etc. (Thériault et al. 2010), may be more often in-

termixed with other forms of precipitation.

Figure 4a shows the rate of agreement between pairs

of augmented ASOS observations that are taken within

10min of each other as a function of the distance that

separates them. As argued above, RA and SN have very

high rates of agreement (91%–98%) for the range of

distances shown. The agreement is not as good for

FZRA and PL. For the pairs that are 16 km apart (the

shortest distance between augmented sites used in this

study), the average rate of agreement for FZRA (PL) is

about 75% (39%). For comparison, a similar analysis

was conducted using the mPING observations (Fig. 4b).

Note that the minimum distance considered for this

analysis is 1 km. The variability at subkilometer scales is

not assessed since this is beyond the current capabilities

of operational numerical weather prediction (NWP)

models. The rates of agreement are lower for RA, SN,

and FZRA and higher for PL, a consequence of the

relative biases in this network. There is also a slight

decrease in the rates of agreement in the mPING-PL

curve for distances less than 5km. But this decrease is

not statistically significant. Overall, both networks show

that the curves are comparatively flat, indicating that the

distance separating pairs does not exert a strong control

on the likelihood that the observations will agree. Such

is counterintuitive. One might expect that two randomly

selected observations that are only 5 km apart would

have a much better chance of experiencing the same

precipitation type than pairs that are 50 km apart.

Likewise for pairs that are 50 versus 500 km apart, but

this is not the case and, hence, stands as a sobering

limitation on precipitation-type prediction.

The rates of agreement in Fig. 4 give some sense of the

limit one can expect on the POD for precipitation-type

algorithms when applied to NWP output. Because the

closest ASOS pair is 16 km apart and the mPING ob-

servations have the reporting biases noted in section 2,

the points in Fig. 4a are fitted by a second-order poly-

nomial curve to extrapolate the rates of agreement for

distances less than 16km. These curves have very similar

slopes to those from the mPING analysis (Fig. 4b). As-

suming these curves adequately represent the actual

variability, then the rates of agreement for pairs that are

8.5 km apart (the maximum distance between any ob-

servation location and the nearest grid point for a model

with a 12-km spacing) are 97.1%, 98.6%, 77.8%, and

47.8% for SN, RA, FZRA, and PL, respectively. For a

model with a grid spacing of 3 km, the maximum dis-

tance between a grid point and an observation is about

2 km. These percentages (97.8%, 99.9%, 82.2%, and

53.5% for SN, RA, FZRA, and PL) are slightly im-

proved but still suggest that one cannot expect high

PODs for PL.

The above results suggest that as a model’s grid

spacing is increased, its ability to resolve the various

FIG. 4. The rate of agreement for (a) all augmented ASOS observations (dots) as well as a second-order least

squares fit (dashed) and (b) mPING observations.
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regions of SN, RA, FZRA, and PL is not markedly

changed. To gauge whether this is true, 1-h High-

Resolution Rapid Refresh (HRRR; Brown et al. 2011)

forecasts are obtained for those mPING events with 200

or more reports. There are 281 hourly and 80 881

mPING observations that meet these criteria. The ef-

fects of changing the grid resolution are tested by thin-

ning the HRRR forecasts from their native grid spacing

of 3 km to grid spacings of 12, 24, and 36 km. Though the

mPING observations have some biases when compared

to the augmented ASOS and model uncertainty is

nontrivial for some forms of precipitation (e.g., Reeves

et al. 2014), the interest here is in relative rather than

absolute statistics.

The PODs for each algorithm and each grid spacing are

provided in Table 4. Regardless of the precipitation type

or algorithm used, as the grid spacing is increased, the

PODs do not significantly change. Therefore, all else

being equal, forecast accuracy for precipitation is not a

function of the model grid spacing, at least for the range

of grid spacings considered herein. However, there are

three caveats worth noting with the above approach.

First, preliminary work by Johnson and Shepherd (2016)

indicates that there is a preference for warmer forms of

precipitation to occur in urban areas. Indeed, themPING

observations do indicate that the greatest variability may

exist in urban and suburban areas (not shown). Urban

heat effects may not be well handled, even in a 3-km

model. Second, the approach used here is intentionally

designed to isolate the effects of grid spacing from other

possible contributors, such as differences that occur as the

result of cumulus parameterization or the development of

scale-dependent flow patterns in one forecast versus an-

other. Comparisons of models that are identical save for

the grid spacing and use of a cumulus parameterization

scheme at longer lead times may very well have different

validation statistics. Third, this study neglects the vali-

dation in complex terrain, which may benefit from in-

creased resolution. Work is under way to investigate this

latter issue.

4. Conclusions

The effects of uncertainty in observations of pre-

cipitation type on the apparent performance of

precipitation-type algorithms are assessed. Three data-

sets are considered: augmented ASOS, nonaugmented

ASOS, and the Meteorological Phenomena Identifica-

tion Near the Ground (mPING). Three different algo-

rithms that represent a range of inherent biases are used

in the assessment. These are Baldwin2, Bourgouin, and

Ramer (Baldwin et al. 1994; Bourgouin 2000; Ramer

1993). Though some reporting errors may have occurred,

only augmented ASOS sites where 95% or more of the

reports associated with precipitation have an augmenta-

tion flag are included, thus allowing this dataset to be used

as the ‘‘truth’’ against which the other networks are

compared.

The frequencies of the different precipitation types

vary by network. The augmented ASOS dataset is

dominated by RA/DZ and SN. Of the remaining cate-

gories, RASN, FZDZ, FZRA, and PL/PL mixes are

reported at near-equal frequencies. The nonaugmented

ASOS results suffer from an inability to report mixes,

freezing drizzle, and ice pellets and so tends to be biased

toward RA, but otherwise agrees well with the aug-

mented ASOS. The mPING network has a lower fre-

quency of RA reports, which is likely due to the fact that

this form of precipitation is not as novel and, hence, may

not inspire as many reports. It is also biased toward PL

and away from FZRA.

The effects of network biases on the probability of de-

tection (POD) from the precipitation-type classifiers is not

significant for the nonaugmentedASOS, excepting for PL,

which for obvious reasons, is notwell validatedwhen using

this network. However, when validated against mPING,

the PODs for RA and PL have marked decreases. There

are many situations where FZRA is diagnosed at a time

and location where RA is reported by the mPING net-

work. This appears to be due to the preference formPING

reports to come from urban and suburban settings, where

sensible heat sourcesmay prevent the surface temperature

from dipping below 08C. When mPING observations of

RA that correlate to soundings with a surface-based sub-

freezing layer are removed, the PODs agree more closely

with the augmented ASOS data. The lower PODs for PL

are a consequence of the mPING’s apparent bias toward

that form of precipitation. These results are only obtained

when the mPING network is thinned to include only the

TABLE 4. The PODs for the 1-h HRRR forecasts for select

events using the native 3-km grid spacing and then thinning to 12,

24, and 36 km.

SN RA PL FZRA

Baldwin2 3 km 86.0 87.4 11.6 42.1

12 km 86.4 86.1 11.6 41.2

24 km 86.0 86.4 12.2 42.3

36 km 86.0 84.1 12.2 42.7

Bourgouin 3 km 86.4 86.6 35.4 36.7

12 km 84.9 86.9 32.0 36.0

24 km 84.9 86.6 33.3 36.2

36 km 81.1 85.1 37.4 38.9

Ramer 3 km 88.5 90.2 58.5 39.5

12 km 88.9 92.0 57.1 38.4

24 km 88.1 90.7 59.2 40.1

36 km 88.2 91.7 55.8 37.8
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closest observation in time and space to the sounding.

Using all observations results in strongly reduced PODs

for RA and marked increases in PODs for PL.

Since crowdsourcing is a growing trend for collecting

meteorological observations, it is appropriate at this

juncture to say a few words about reports made by un-

trained observers and the degree of reliability one should

ascribe to these types of data. In the case of mPING,

quality control is especially difficult. It is possible for

malicious users to log in and purposely make false re-

ports, but the bigger issue appears to be education of the

users and their ability to properly distinguish between the

various forms of precipitation. Even if they are able to

correctly identify the precipitation type, it is unclear what

criteria they are employing to decide what form of pre-

cipitation to report. For example, ASOS instruments will

only report FZRAwhen ice accretion begins at 2m above

ground level. It is possible that mPING users are gauging

the presence of FZRA by looking at power lines, tree-

tops, or evenmedia reports. Onemust also be wary of the

overrepresentation of the observations; it is possible for a

user at one location to make continuous reports of the

same kind of precipitation over an extended period of

time.WithASOS, onewould customarily choose only the

closest observation in time, but with mPING, since each

observation is treated individually (as opposed to coming

from one source), one must be careful to ensure over-

representation does not occur.

Temporal variability is another source of uncertainty

considered herein. While RA and SN are comparatively

long lived, FZRA, PL and other transitional forms of

precipitation typically last less than an hour. This is

problematic when the model validation period is one or

more hours in duration. Different validation approaches

were considered to assess whether they have an effect on

the apparent performance of the classifiers. Depending

on how a hit is defined, PODs ranging from about 25%

to 75% are obtained. These PODs differ quite dramat-

ically from those obtained for long-duration events,

making all of the algorithms appear to perform much

more accurately than they really do.

Spatial variability is also considered. In comparison to

RA and SN, FZRA and PL have rather high variability,

meaning that they are more likely to be observed in

proximity to other forms of precipitation. The spatial

variability of PL, according to the augmented ASOS, is

sufficiently high that even for a model with a 3-km grid

spacing one cannot expect the PODs for PL to exceed

about 54%. The spatial trends according to the mPING

observations are somewhat different, suggesting that

FZRA is the most variable and that the maximum POD

one can expect for this category is about 48%. Never-

theless, the variability for all of the precipitation types is

only weakly dependent on the distance. This is true for

both the augmented ASOS and mPING networks and

suggests increasing the horizontal grid spacing of a

model will not significantly impact its ability to predict

the various forms of precipitation. Simple tests with the

HRRR model corroborate this assumption.

It is this author’s opinion that to truly measure the

accuracy of an algorithm, one should restrict one’s self to

unambiguous observations (i.e., cases where the tem-

poral and spatial representativity is resolved by the

model in question). However, this says nothing of an

algorithm’s performance for the vast majority of events

in which a great deal of ambiguity does exist. One ap-

proach for mitigating this is to include mix classes in the

algorithms. Another, perhaps more desirable approach,

is to use ensemble prediction to provide probabilistic

forecasts of precipitation type, thus providing the fore-

caster with greater insight into the likelihood of wintry

mixes verses long-lived episodes of FZRA and PL.
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